Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Syst Neurosci ; 15: 771661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880734

RESUMEN

Synaptic plasticity is vital for learning and memory in the brain. It consists of long-term potentiation (LTP) and long-term depression (LTD). Spike frequency is one of the major components of synaptic plasticity in the brain, a noisy environment. Recently, we mathematically analyzed the frequency-dependent synaptic plasticity (FDP) in vivo and found that LTP is more likely to occur with an increase in the frequency of background synaptic activity. Meanwhile, previous studies suggest statistical fluctuation in the amplitude of background synaptic activity. Little is understood, however, about its contribution to synaptic plasticity. To address this issue, we performed numerical simulations of a calcium-based synapse model. Then, we found attenuation of the tendency to become LTD due to an increase in the fluctuation of background synaptic activity, leading to an enhancement of synaptic weight. Our result suggests that the fluctuation affects synaptic plasticity in the brain.

2.
Microsc Microanal ; : 1-7, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34294188

RESUMEN

The study of the sinking phenomenon of diatom cells, which have a slightly larger specific gravity (~1.3) compared to that of water, is an important research topic for understanding photosynthetic efficiency. In this study, we successfully demonstrated the observation of the sinking behaviors of four different species of diatom using a homemade "tumbled" optical microscope. A homemade 1 mm3 microchamber was employed to decrease the effects of convection currents. In the microchamber, diatom cells were basically settled in a linear manner without floating, although some of the cells were rotated during their sinking. Sinking speeds of the four species of diatom cells, Nitzschia sp., Pheodactylum tricornutum, Navicula sp., and Odontella aurita, were 0.81 ± 5.56, 3.03 ± 10.17, 3.29 ± 7.39, and 11.22 ± 21.42 µm/s, respectively, based on the automatic tracking analysis of the centroids of each cell. Manual analysis of a vector between two longitudinal ends of the cells (two-point analysis) was effective for quantitatively characterizing the rotation phenomenon; therefore, angles and angular velocities of rotating cells were well determined as a function of time. The effects of the cell shapes on sinking velocity could be explained by simulation analysis using the modified Stokes' law proposed by Miklasz et al.

3.
J Chromatogr A ; 1427: 170-6, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26700155

RESUMEN

Monoamine- and triamine-bonded silica nanoparticles were prepared using 3-aminopropyltrimethoxysilane and N(1)-(3-trimethoxysilylpropyl)diethylenetriamine, respectively, and used as pseudostationary phases for capillary electrochromatography. The amine-bonded silica nanoparticles were tightly adsorbed on the inner wall of a capillary and generated fast electro-osmotic flow (2.59 × 10(-4) cm(2) V(-1) s(-1)) toward the anode in an electric field. The electro-osmotic velocities obtained with 20 nm triamine-bonded silica were three to five times larger than those generated by a fused silica capillary and two times faster than those for the commercial cationic polymer-modified capillary. Fast electro-osmotic flow enables rapid analysis. This method was applied to hydrophilic interaction chromatography (HILIC) mode separation of various samples including the size separation of glucose oligomer derivatives and the resolution of four nucleic acid bases.


Asunto(s)
Compuestos de Organosilicio/química , Poliaminas/química , Propilaminas/química , Silanos/química , Dióxido de Silicio/química , Adsorción , Electrocromatografía Capilar/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...